Search results for "Cyclin-Dependent Kinase 2"

showing 10 items of 28 documents

Molecular analysis of differential antiproliferative activity of resveratrol, epsilon viniferin and labruscol on melanoma cells and normal dermal cel…

2018

IF 3.778 (2016); International audience; Very recently, we have produced new resveratrol derived compounds, especially labruscol by culture of elicited grapevine cell suspensions (Vitis labrusca L.). This new polyphenolic oligomer could function as cancer chemopreventive agent in similar manner of resveratrol. In this study, we have determined the efficiency of resveratrol, ε-viniferin and the labruscol on human melanoma cell with or without metastatic phenotype. Our results show a differential activity of the three compounds where the resveratrol remains the polyphenolic compound with the most effective action compared to other oligomers. These three compounds block cell cycle of melanoma …

0301 basic medicineBioproductsProgrammed cell deathCellCyclin AResveratrolepsilon-ViniferinCell cycleToxicologyS Phase03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCell Line Tumor[SDV.IDA]Life Sciences [q-bio]/Food engineeringCDC2 Protein KinaseCyclin EStilbenesmedicineCytotoxic T cellAnticarcinogenic AgentsHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCyclin D1VitisMelanoma cellsMelanomaCyclinBenzofuransCell ProliferationSkinKinaseCyclin-Dependent Kinase 2food and beveragesPolyphenolsGeneral MedicineCell cycleFibroblasts3. Good health030104 developmental biologymedicine.anatomical_structurechemistryResveratrol030220 oncology & carcinogenesis[SDV.TOX]Life Sciences [q-bio]/ToxicologyCancer researchFood ScienceFood and chemical toxicology : an international journal published for the British Industrial Biological Research Association
researchProduct

Chronic Sulforaphane Application Does Not Induce Resistance in Renal Cell Carcinoma Cells.

2018

Background/aim Since the natural compound sulforaphane (SFN) has been shown to stop tumor growth, renal cell carcinoma (RCC) patients often use this drug in addition to their prescribed oncotherapy. The aim of this study was to examine whether resistance to SFN may develop after long-term application. Materials and methods Several RCC cell lines were incubated with SFN for short periods of time (24-72 h) or long periods of time (8 weeks) and cell growth, proliferation, and cell-cycle proteins were analyzed. Results Both short- and long-term application of SFN distinctly reduced RCC cell growth and proliferation. However, differences in the distribution of cells in each phase of the cell cyc…

0301 basic medicineCancer ResearchTime FactorsCell SurvivalCell Cycle Proteins03 medical and health scienceschemistry.chemical_compoundIsothiocyanatesCell Line TumorAnticarcinogenic AgentsHumansPhosphorylationProtein kinase BCarcinoma Renal CellCell ProliferationCyclin-dependent kinase 1biologyCell growthCyclin-dependent kinase 2General MedicineCell cycleKidney NeoplasmsGene Expression Regulation Neoplastic030104 developmental biologyOncologychemistryCell cultureA549 CellsDrug Resistance NeoplasmSulfoxidesCancer researchbiology.proteinSignal transductionDrug Screening Assays AntitumorSulforaphaneSignal TransductionAnticancer research
researchProduct

Polyphenols from Pennisetum glaucum grains induce MAP kinase phosphorylation and cell cycle arrest in human osteosarcoma cells

2019

Abstract Osteosarcoma is the most common bone tumor with a high prevalence among children and adolescents. Polyphenols are widely investigated for their chemopreventive and chemotherapeutic proprieties. In the present study, we explored the pro-apoptotic effects of pearl millet, Pennisetum glaucum, phenolic compounds (PGPC) on osteosarcoma U-2OS cells. Our results show that PGPC induced U-2OS cells death, in a dose dependent manner, with an IC50 of 80 μg/mL. Annexin-V and 7-AAD staining show that PGPC induced cell death mainly through caspase-dependent apoptosis as shown by a decrease in cell death when co-treated with pan-caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketon…

0301 basic medicineCell signalingProgrammed cell deathCell cycle checkpointp38 mitogen-activated protein kinases[SDV]Life Sciences [q-bio]Medicine (miscellaneous)Pearl milletCell cycle arrest03 medical and health sciences0404 agricultural biotechnologyTX341-641Intracellular calciumProtein kinase BPI3K/AKT/mTOR pathwayCaspase030109 nutrition & dieteticsNutrition and DieteticsbiologyNutrition. Foods and food supplyChemistryCyclin-dependent kinase 2Polyphenols04 agricultural and veterinary sciencesU-2OS cells040401 food scienceMolecular biology3. Good healthApoptosisbiology.proteinFood Science
researchProduct

Protein kinase activities associated with ribosomes of developing rat brain. Identification of eukaryotic initiation factor 2 kinases.

1986

Protein kinases associated with ribosomes in the brains of suckling (4-10 days) and adult (2 months) rats were extracted from ribosomal fraction with 0.5 M KCl. The different protein kinase activities were characterized by their ability to phosphorylate three exogenous substrates: casein, histone IIs and histone IIIs in the presence of different modulators. Ribosomal salt wash fractions contain a high casein kinase activity which was partially inhibited by heparin and stimulated by calmodulin in the presence of Ca2+, indicating the presence of casein kinase I and II and calcium/calmodulin-dependent kinases. Cyclic AMP and cyclic GMP-dependent kinases and protein kinase C (calcium/phospholip…

AgingbiologyCyclin-dependent kinase 2BrainCaseinsRats Inbred StrainsMitogen-activated protein kinase kinaseRatseIF-2 KinaseDevelopmental NeuroscienceBiochemistryCasein Kinase ICasein kinase 2 alpha 1biology.proteinAnimalsASK1Cyclin-dependent kinase 9Casein kinase 1Casein kinase 2PhosphorylationProtein KinasesRibosomesDevelopmental BiologySubcellular FractionsInternational journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience
researchProduct

A Definitive Pharmacophore Modelling Study on CDK2 ATP Pocket Binders: Tracing the Path of New Virtual High-Throughput Screenings

2020

Cyclin Dependent Kinases-2 (CDK2) are members of serine/threonine protein kinases family. They play an important role in the regulation events of the eukaryotic cell division cycle, especially during the G1 to S phase transition. Experimental evidence indicate that excessive expression of CDK2s should cause abnormal cell cycle regulation. Therefore, since a long time, CDK2s have been considered potential therapeutic targets for cancer therapy. In this work, onehundred and forty-nine complexes of inhibitors bound in the CDK2-ATP pocket were submitted to short MD simulations (10ns) and free energy calculation. Comparison with experimental data (K<sub>i</sub>, K<sub>d</su…

CDK20301 basic medicineComputer scienceATP pocketCancer therapyComputational biologyMolecular dynamicsTracingCommon hits approachInhibitory Concentration 5003 medical and health sciencesMolecular dynamicsAdenosine Triphosphate0302 clinical medicineNeoplasmsDrug DiscoveryHumansProtein Kinase InhibitorsThroughput (business)Eukaryotic cellMM-GBSABinding SitesbiologyCyclin-Dependent Kinase 2Cyclin-dependent kinase 2High-Throughput Screening AssaysMolecular Docking Simulation030104 developmental biology030220 oncology & carcinogenesisPharmacophore modellingPath (graph theory)biology.proteinPharmacophoreProtein BindingCurrent Drug Discovery Technologies
researchProduct

Differences in the mechanisms of growth control in contact-inhibited and serum-deprived human fibroblasts

1997

In the present work we studied mechanisms of growth control in contact-inhibited and serum-deprived human diploid fibroblasts. The observation that the effects on [3H]thymidine incorporation and reduction of retinoblastoma gene product-phosphorylation were additive when contact-inhibition and serum-deprivation were combined led us to the conclusion that the underlying mechanisms might be different. Both contact-inhibition and serum-deprivation led to a strong decrease of cdk4-kinase-activity and cdk2-phosphorylation at Thr 160, while the total amounts of cdk4 and cdk2 remained constant. In contact-inhibited cells, we revealed a strong protein accumulation of the cdk2-inhibitor p27 and a sli…

Cancer ResearchCell Cycle ProteinsProtein Serine-Threonine KinasesRetinoblastoma ProteinCulture Media Serum-FreeS PhaseCyclin D1CyclinsProto-Oncogene ProteinsCDC2-CDC28 KinasesGeneticsmedicineHumansCyclin D1Cyclin D3PhosphorylationCyclin D3FibroblastMolecular BiologyCyclin-Dependent Kinase Inhibitor p16CyclinbiologyCell growthTumor Suppressor ProteinsCyclin-Dependent Kinase 2Cyclin-dependent kinase 2G1 PhaseCyclin-Dependent Kinase 4FibroblastsDiploidyCyclin-Dependent KinasesCulture MediaCell biologymedicine.anatomical_structureCell culturebiology.proteinbiological phenomena cell phenomena and immunitySignal transductionMicrotubule-Associated ProteinsCell DivisionCyclin-Dependent Kinase Inhibitor p27Oncogene
researchProduct

Translocation of cdk2 to the nucleus during G1-phase in PDGF-stimulated human fibroblasts.

1997

We studied the subcellular distribution of cdk2 in synchronized, PDGF-stimulated human fibroblasts (FH109). After contact inhibition and serum depletion, more than 95% of FH109 cells were arrested in G0/G1-phase. PDGF-AB led to a 16-fold increase in proliferation compared with untreated cells. Cell cycle progression was studied by flow cytometric analysis, [3H]thymidine incorporation, and phosphorylation of the retinoblastoma gene product, pRB. Using Western blot analysis after subcellular fractionation, we revealed that after PDGF stimulation the phosphorylated (Thr 160), i.e., activated, form of cdk2 (33 kDa) first appeared in the nucleus at late G1-phase and persisted throughout until to…

CytoplasmFluorescent Antibody TechniqueProtein Serine-Threonine KinasesmedicineCDC2-CDC28 KinasesHumansCells CulturedCell NucleusPlatelet-Derived Growth FactorbiologyKinaseCyclin-dependent kinase 2Cyclin-Dependent Kinase 2G1 PhaseContact inhibitionBiological TransportCell BiologyCell cycleFibroblastsMolecular biologyCyclin-Dependent KinasesCell biologyCell CompartmentationCytosolmedicine.anatomical_structurebiology.proteinCell fractionationNucleusPlatelet-derived growth factor receptorCyclin-Dependent Kinase-Activating KinaseExperimental cell research
researchProduct

Interaction of Mitogen-activated Protein Kinases with the Kinase Interaction Motif of the Tyrosine Phosphatase PTP-SL Provides Substrate Specificity …

1999

ERK1 and ERK2 associate with the tyrosine phosphatase PTP-SL through a kinase interaction motif (KIM) located in the juxtamembrane region of PTP-SL. A glutathione S-transferase (GST)-PTP-SL fusion protein containing the KIM associated with ERK1 and ERK2 as well as with p38/HOG, but not with the related JNK1 kinase or with protein kinase A or C. Accordingly, ERK2 showed in vitro substrate specificity to phosphorylate GST-PTP-SL in comparison with GST-c-Jun. Furthermore, tyrosine dephosphorylation of ERK2 by the PTP-SLDeltaKIM mutant was impaired. The in vitro association of ERK1/2 with GST-PTP-SL was highly stable; however, low concentrations of nucleotides partially dissociated the ERK1/2.P…

Cytoplasmanimal structuresProtein Kinase C-alphaRecombinant Fusion ProteinsCèl·lulesNerve Tissue ProteinsProtein tyrosine phosphataseMitogen-activated protein kinase kinaseTransfectionenvironment and public healthBiochemistrySH3 domainReceptor tyrosine kinaseMAP2K7Substrate SpecificitySerineAnimalsc-RafAmino Acid SequenceMolecular BiologyProtein Kinase CSequence DeletionMitogen-Activated Protein Kinase 1Binding SitesMitogen-Activated Protein Kinase 3biologyCyclin-dependent kinase 2Intracellular Signaling Peptides and ProteinsJNK Mitogen-Activated Protein KinasesCell BiologyCyclic AMP-Dependent Protein KinasesIsoenzymesenzymes and coenzymes (carbohydrates)KineticsBiochemistryAmino Acid SubstitutionCOS CellsCalcium-Calmodulin-Dependent Protein Kinasesbiology.proteinMutagenesis Site-DirectedCyclin-dependent kinase 9CattleMitogen-Activated Protein KinasesProtein Tyrosine PhosphatasesProteïnes
researchProduct

Resveratrol, a chemopreventive agent, disrupts the cell cycle control of human SW480 colorectal tumor cells

2002

Resveratrol is a natural polyphenolic compound produced by a number of plants and found in high amount in peanuts, seeds, grapes or berries as source of human nutrition. Epidemiological studies strongly suggest that resveratrol may act as a cancer chemopreventive compound. The mechanism by which resveratrol inhibits cell proliferation was studied in human colorectal tumor SW480 cell line. The results show that resveratrol strongly inhibits cell proliferation at the micromolar range in a time- and dose-dependent manner. Resveratrol appears to block the cell cycle at the transition --> G2/M since inhibition of [(3)H]-thymidine incorporation is not observed, while there is an increase of the c…

DNA Replicationendocrine system diseasesCellCyclin AAdenocarcinomaCyclin BProtein Serine-Threonine KinasesResveratrolS Phasechemistry.chemical_compoundCDC2 Protein KinaseStilbenesCDC2-CDC28 KinasesTumor Cells CulturedGeneticsmedicineAnticarcinogenic AgentsHumansCyclin B1Phosphorylationskin and connective tissue diseasesCyclinCyclin-dependent kinase 1biologyKinaseCell growthorganic chemicalsCell CycleCyclin-Dependent Kinase 2Cyclin-dependent kinase 2food and beveragesGeneral MedicineCell cycleFlow CytometryCyclin-Dependent KinasesGrowth InhibitorsNeoplasm ProteinsGene Expression Regulation Neoplasticmedicine.anatomical_structureBiochemistrychemistryResveratrolEnzyme Inductionbiology.proteinCancer researchColorectal NeoplasmsProtein Processing Post-TranslationalCell DivisionInternational Journal of Molecular Medicine
researchProduct

GM-CSF restores innate, but not adaptive, immune responses in glucocorticoid-immunosuppressed human blood in vitro.

2003

Abstract Infection remains the major complication of immunosuppressive therapy in organ transplantation. Therefore, reconstitution of the innate immunity against infections, without activation of the adaptive immune responses, to prevent graft rejection is a clinically desirable status in transplant recipients. We found that GM-CSF restored TNF mRNA and protein expression without inducing IL-2 production and T cell proliferation in glucocorticoid-immunosuppressed blood from either healthy donors or liver transplant patients. Gene array experiments indicated that GM-CSF selectively restored a variety of dexamethasone-suppressed, LPS-inducible genes relevant for innate immunity. A possible ex…

Graft RejectionLipopolysaccharidesT-LymphocytesCell Cycle ProteinsCell SeparationOrgan transplantationDexamethasoneMiceCDC2-CDC28 KinasesConcanavalin ATumor Cells CulturedImmunology and AllergySkin TransplantationMiddle AgedCyclin-Dependent KinasesUp-RegulationSurvival Ratemedicine.anatomical_structureImmunity ActiveTumor necrosis factor alphaGlucocorticoidCell DivisionCyclin-Dependent Kinase Inhibitor p27Immunosuppressive Agentsmedicine.drugAdultmedicine.medical_specialtyT cellImmunologyDown-RegulationBiologyProtein Serine-Threonine KinasesImmune systemAdjuvants ImmunologicIn vivomedicineAnimalsHumansDexamethasoneAgedSalmonella Infections AnimalInnate immune systemTumor Suppressor ProteinsCyclin-Dependent Kinase 2Granulocyte-Macrophage Colony-Stimulating FactorImmunity InnateGene Expression RegulationImmunologyLeukocytes MononuclearMice Inbred CBAInterleukin-2Interleukin-1Journal of immunology (Baltimore, Md. : 1950)
researchProduct